OK L A H O M A S T A T E U N IVERSIT Y SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear Systems Fall 2003
Midterm Exam \#1

Do All Five Problems

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

Let $\bar{y}(t)$ be the unit-step response of a linear time-invariant system. Show that the impulse response of the system equals $\frac{d \bar{y}(t)}{d t}$.

Problem 2:

a) For a moving-average (MA) model,

$$
Y(z)=\left[b_{0}+b_{1} z^{-1}+\cdots+b_{m} z^{-m}\right] U(z),
$$

develop a simulation diagram in controllable canonical form.
b) For a autoregressive (AR) model,

$$
Y(z)\left(1+a_{1} z^{-1}+\cdots+a_{n} z^{-n}\right)=U(z),
$$

develop a simulation diagram in controllable canonical form.
c) Given a mixed or ARMA model,

$$
\frac{Y(z)}{U(z)}=\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{m} z^{-m}}{1+a_{1} z^{-1}+\cdots+a_{n} z^{-n}}
$$

show how to merge the simulation diagrams of the MA and AR models in a) and b) so as to obtain a minimal realization of the ARMA model.

Problem 3:

Show that a realization for the circuit shown below can be written as

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
-2 R / L & 1 / L \\
-1 / C & 0
\end{array}\right] x(t)+\left[\begin{array}{l}
R / L \\
1 / C
\end{array}\right] u(t), \\
& y(t)=\left[\begin{array}{ll}
-R & 1
\end{array}\right] x(t)+R u(t)
\end{aligned}
$$

if we choose $x_{1}(t)=i_{L}(t), x_{2}(t)=V_{C}(t)$. Show also that the transfer function is given by

$$
H(s)=\frac{Y(s)}{U(s)}=\frac{R s^{2}+\left[(1 / C)+\left(R^{2} / L\right)\right] s+(R / L C)}{s^{2}+(2 R / L) s+(1 / L C)} .
$$

Note that when $R^{2}=L / C$, the transfer function is a constant, $H(s)=R$, for all values of s. This is known as a constant-resistance network.

Problem 4:

Let

$$
H(z)=\left[\begin{array}{cc}
\frac{2+z^{-1}-z^{-2}}{z^{2}-1} & \frac{z^{-2}}{1+2 z^{-1}-3 z^{-2}} \\
\frac{z^{-1}+2 z^{-2}}{1-z^{-2}} & \frac{3+z^{-2}}{1+z^{-1}+2 z^{-2}}
\end{array}\right]
$$

be a transfer function matrix. Find a minimal realization (i.e., simulation diagram and state space representation) for the discrete-time system, $H(z)$.

Problem 5:

Find the A, B, C, and D matrices for the composite system using two subsystems $\left\{A_{i}, B_{i}, C_{i}, D_{i}\right\}$, $i=1,2$, connected in negative feedback, with $\left\{\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}, \mathrm{D}_{1}\right\}$ in the forward loop and $\left\{\mathrm{A}_{2}, \mathrm{~B}_{2}, \mathrm{C}_{2}, \mathrm{D}_{2}\right\}$ in the feedback loop.

